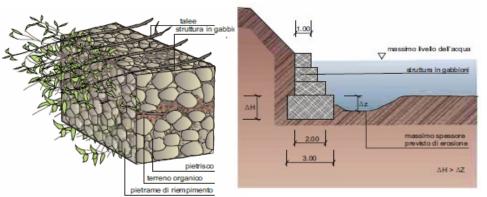


Progettazione e realizzazione di strutture idrauliche

OPERE LONGITUDINALI


Date

MACCAFERRI

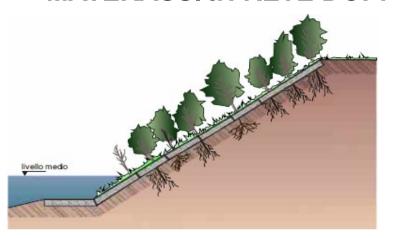
SOLUZIONI TECNICHE

GABBIONI IN RETE DOPPIA TORSIONE

Le gabbionate sono strutture permeabili, resistenti e allo stesso tempo molto flessibili, in grado di sopportare agevolmente deformazioni dei singoli elementi, assestamenti e/o cedimenti del piano di posa o del terreno a tergo dovuti.

La struttura modulare e la forma degli elementi conferiscono all'opera una notevole capacità di adattamento alle conformazioni plano-altimetriche del terreno, rendendo i gabbioni particolarmente adatti a interventi di sistemazione in alveo e di difesa di sponda.

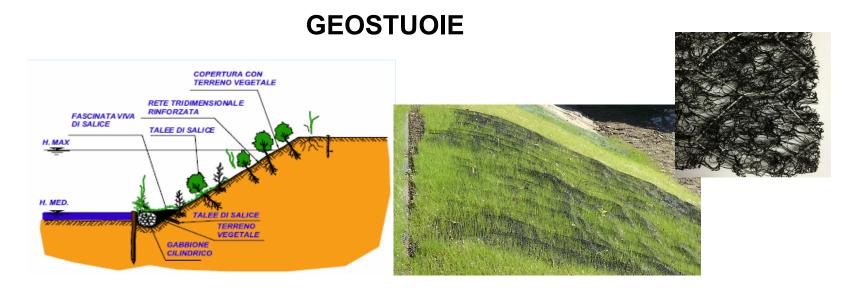
MATERASSI IN RETE DOPPIA TORSIONE



Una protezione contro l'erosione mediante strutture caratterizzate da una elevata resistenza alle azioni di trascinamento della corrente, può essere garantita da scatolari in rete metallica a doppia torsione, riempiti di pietrame di idonea pezzatura.

Di spessore variabile tra 23-30 cm i materassi sono difese studiate da lungo tempo sotto il profilo idraulico, meccanico ed ambientale.

MATERASSI IN RETE DOPPIA TORSIONE RINVERDITI

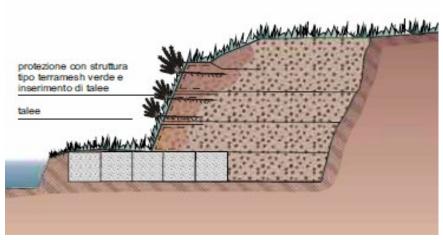

Materassi foderati all'interno con stuoie sintetiche o in fibra vegetale con funzione di filtro e ritenzione.

L'impiego di geotessili, che non consentono la radicazione delle piante, va limitato alle parti sommerse. Alcuni moduli non soggetti a sommersione, possono essere riempiti con terreno vegetale.

Vengono effettuate sulla superficie semina e messa a dimora di talee, rizomi, cespi e arbusti radicati di specie autoctone, nella parte che rimane al di fuori del livello medio di piena.

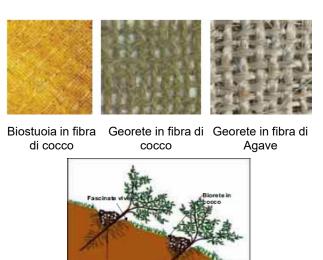
DIFESE SPONDALI FLESSIBILI

Rivestimento di sponde soggette a erosione mediante la stesa di una stuoia sintetica tridimensionale, spessore min. 10 mm, eventualmente rinforzate da una rete metallica a doppia torsione.


Le geostuoie vengono fissate al terreno mediante picchetti, eventualmente ancorati con una fune di acciaio.

Il rivestimento viene abbinato ad idrosemina a spessore e messa a dimora di arbusti autoctoni e di talee di specie con capacità di propagazione vegetativa.

TERRE RINFORZATE


Questi sistemi puntano a migliorare le caratteristiche meccaniche del terreno conferendogli anche un'adeguata resistenza a trazione.

Mediante l'inserimento nel terreno di elementi capaci di sviluppare resistenza a trazione, il risultato è un sistema composito dotato di caratteristiche meccaniche superiori rispetto a quelle del terreno originale.

DIFESE SPONDALI - INGEGNERIA NATURALISTICA

BIOSTUOIE

Costituita da una biostuoia (biofeltro, biorete), fissata al terreno mediante picchetti metallici, eventualmente abbinata a idrosemina, posa di talee piantagione di arbusti. Viene inserita lungo scarpate anche superiori a 40° rispetto all'orizzontale. La disposizione spaziale consiste nel rivestimento totale della superficie di intervento.

STRUTTURE FLESSIBILI: GABBIONI E MATERASSI

Nel caso di installazione subacquea del rivestimento, le unità possono essere facilmente preriempite a terra e varate mediante gru ed appositi telai

Bordeaux, Francia

Criteri progettuali

METODOLOGIE PROGETTUALI

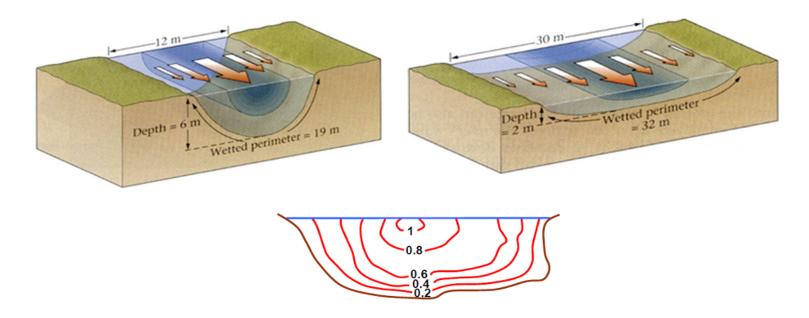
APPROCCI DISPONIBILI

La verifica di una protezione spondale può essere fatta usando 2 diversi metodi basati su:

VELOCITA'

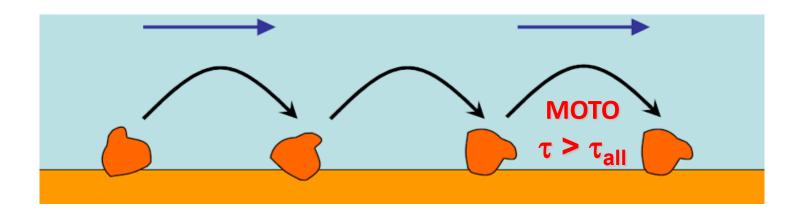
$$V < V_{all}$$

TENSIONI DI TRASCINAMENTO


$$T < T_{all}$$

τ_{all} e v_{all} sono rispettivamente lo sforzo di taglio prodotto dalla corrente e la velocità di flusso dell'acqua in corrispondenza dei quali hanno inizio i movimenti delle particelle solide.

Metodo delle velocità ammissibili


La distribuzione delle velocità dipende dalla sezione idraulica; i valori minori sono in prossimità delle sponde e quelli massimi in prossimità della supeficie nella sezione centrale

METODO DELLE TENSIONI AMMISSIBILI

I processi di erosione possono essere affrontati in maniera più razionale considerando le forze agenti su una particella posta sul fondo o sulle sponde. La sezione del canale viene erosa se la risultante delle forze che tende a muovere le particelle è maggiore delle forze resistenti; in caso contrario la sezione è stabile

Metodo delle tensioni ammissibili

La verifica di stabilità è soddisfatta quando:

$$\tau_{\rm all} > \tau$$

E il coefficiente di sicurezza?

Poichè per il calcolo delle tensioni agenti τ si usa un'equazione che sovrastima i valori, si può assumere un **coefficiente di sicurezza pari a 1**

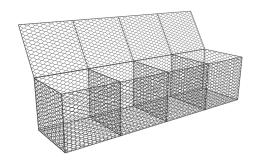
Fattori di sicurezza compresi >1 possono essere appropriati nei casi di:

- Corrente critica o supercritica (F≥1)
- Zone a basso o nullo sviluppo vegetazionale (deserti)
- Elevata incertezza sulla portata di progetto

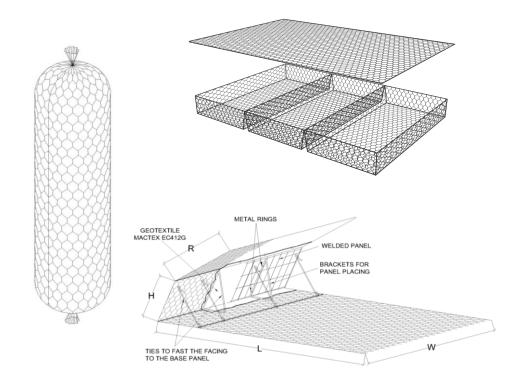
METODOLOGIE PROGETTUALI

Metodo delle tensioni ammissibili

TENSIONI AMMISSIBILI - TECNICHE DI INGEGNERIA NATURALISTICA


	NON VEGETATO struttura appena realizzata senza lo sviluppo delle piante vive	VEGETATO con le piante vive sviluppate dopo il terzo periodo vegetativo
MATERIALE	(N/m²)	(N/m²)
Sabbia fine	3.5	-
Sabbia e ghiaia	15	-
Ghiaia grossolana	32	-
Ciottoli	52	-
Argilla compatta	22	-
Cotici erbosi	10 - 20	25 - 60
Gradonata viva (brush layer)	20	100 - 120
Copertura diffusa con ramaglia viva (living brush mattress)	50 - 150	200 - 300
Fascinata viva (willow fascine)	20	60 - 150
Ribalta viva (fascine with brushlayers, willow protection)	20	80 - 150
Palificata viva (vegetated log cribwall)	200	300 - 600

REGIONE LAZIO - COMPENDIO DI INGEGNERIA NATURALISTICA PER DOCENTI E PROFESSIONISTI (2015) – www.aipin.it



Metodo delle tensioni ammissibili

PRODOTTI IN RETI DOPPIA TORSIONE

Metodo delle tensioni ammissibili

TENSIONI AMMISSIBILI PRODOTTI IN RETE DOPPIA TORSIONE

	NON VEGETATO struttura appena realizzata senza lo sviluppo vegetativo	VEGETATO Struttura con piante sviluppate dopo il terzo periodo vegetativo
MATERIALE	(N/m²)	(N/m²)
Materassi Reno Plus 17 cm	445 ⁽¹⁾	445 – 800 ⁽³⁾
Materassi Reno Plus 23 cm	534 ⁽¹⁾	534 – 800 ⁽³⁾
Materassi Reno Plus 30 cm	638 ⁽¹⁾	638 – 800 ⁽³⁾
Gabbione 50 cm	896 ⁽¹⁾	896 - 1000 ⁽³⁾
Macmat R	20 – 120 ⁽²⁾	100 – 300 ⁽²⁾

⁽¹⁾ $D_{50} = 95 \text{ mm}$; $C_u = 1$

⁽²⁾ Funzione della durata di piena (1-60 h)

⁽³⁾ Coperchio in Macmat R

METODOLOGIE PROGETTUALI

Metodo delle tensioni ammissibili

CONDIZIONI DI PROGETTO

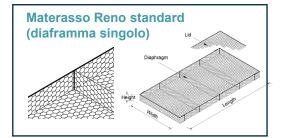
Le verifiche alle tensioni ammissibili vanno eseguite in due condizioni progettuali, al fine di tenere conto dello sviluppo vegetazionale nel tempo

1 - FINE LAVORI

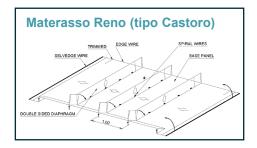
La sezione è in grado di convogliare la portata massima e le tensioni resistenti sono minime: questa è la condizione critica per i rivestimenti

$$<< n$$
 $<< \tau_{all}$

2 - VEGETAZIONE SVILUPPATA


Quando la vegetazione è sviluppata (>3 anni) la resistenza all'erosione è maggiore per effetto dell'apparato radicale, ma si ha al contempo un aumento della scabrezza: questa è la condizione critica per il deflusso.

$$>> \tau_{all} >> n$$
 << Q_{all}

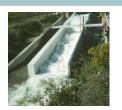

Criteri progettuali

SOLUZIONI INNOVATIVE: MATERASSI RENO PLUS

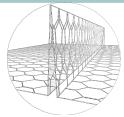
1960 1° Materasso Reno Standard 1984
1° Ricerca alla CSU sui Materasso
Reno Standard
Criterio di progetto
[C_s=0.10-0.12]

1990
Invenzione del
Materasso Reno
col doppio
diaframma
Criterio di progetto
[C_s=0.10-0.12]

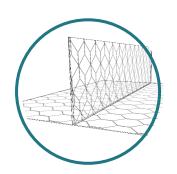
2000
Revisione del parametro C_S
Basato sull'esperienza
Criterio di progetto
[C_S=0.14]

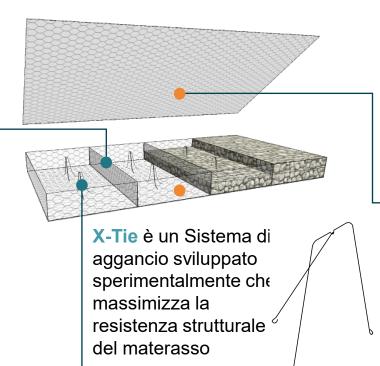


2018-2019
2° Ricerca alla
CSU sul nuovo
Materasso
Reno Plus con
X-Ties.


2020

Nuovi criteri di progetto basati sulle prestazioni migliorate dei Materasso Reno Plus con X-Ties




La ricerca CSU del 2019

Materasso Reno Plus con X-Ties

Il doppio diaframma verticale rende le operazioni di riempiemento più semplici.

Il rivestimento PoliMac® fornisce una protezione eccezionale contro gli agenti abrasivi e le aggressioni chimiche

La ricerca del 2019

CAMPAGNA DI TEST 2019 ALLA COLORADO STATE UNIVERSITY

La ricerca CSU del 2019

COLORADO STATE UNIVERSITY (Fort Collins)

La ricerca CSU del 2019

ELENCO DEI TEST

TASK 1 (Tests A/B/C/D/E) Test Investigativi di laboratorio

TASK 2/3 (Tests 1/2/3/4/5/6) Test granulometria delle pietre & trasduttori di pressione

TASK 4 (Tests A/B/C) Test Investigativi di laboratorio

SCOPO (preliminare)

Monitorare gli effetti sui componenti separatamente :

- 1) Rete DT
- 2) Tipo di partizione
- 3) Pietrame (dimensione & uniformità)

SCOPO (finale)

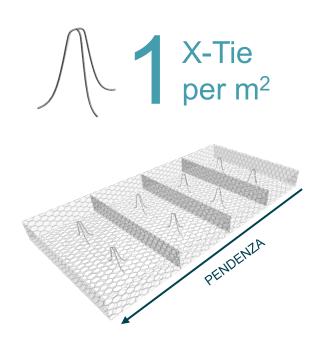
Scegliere la combinazione più prestazionale di materassi e pietre e eseguire test alle portate più elevate, per monitorare il verificarsi di un problema per rottura meccanica o per erosione eccessiva (ASTM D6460)

La ricerca CSU del 2019

TASK 4 (CONFIGURAZIONE FINALE)

SCOPO -

Con la miglior configurazione prestazionale dei materassi (tipo di riempimento in pietrame & spaziatura dei diaframmi) selezionata nei Tasks 1 & 2, il Task 3 era finalizzato a testare il massimo sforzo di taglio sopportabile con la restrizione della minima erosione sotto il materasso (ASTM D6460).



La ricerca CSU del 2019

X-Tie è il tirante innovativo che massimizza le prestazioni strutturali del Materasso Reno.

- Capacità di distribuire le forze su una superficie maggiore
- Installazione più rapida, con i suoi uncini preformati può essere facilmente attaccato alla base del pannello
- La densità è la meta dei tradizionali tiranti verticali.

INSTALLAZIONE PIU' RAPIDA, PRESTAZIONI MIGLIORI



La ricerca CSU del 2019

TASK 4 (Test B)
Materasso Reno Plus 17 cm
Doppio diaframma con X-Ties $D_{50} = 100 \text{ mm}$ $C_u = 1$

Massima tensione agente = 445 N/m²

La ricerca CSU del 2019

TASK 4 (Test C)
Materasso Reno Plus 30 cm
Doppio diaframma con X-Ties $D_{50} = 100 \text{ mm}$ $C_u = D_{60}/D_{10} = 1$

Massima tensione agente = 638 N/m²

La ricerca CSU del 2019

1984-2000:

CSU 1984 Reno Mattress (s.d.)

$$\tau_{\text{all}} = \mathbf{K}_{\text{s}} \mathbf{C}^* (\gamma_{\text{s}} - \gamma_{\text{w}}) \mathbf{d}_{50}$$

[C_{Shields} = 0.047 Rip rap] [C_{Shields}^* = 0.10 (+20%) = 0.12 GB, RM] [con controllo della deformazione]

Late 80s

Castoro mattress

2000-2018:

Reno Mattress (Castoro)

$$[C^*_{\text{Shields}} = 0.12 (+17\%) = 0.14]$$

1984-2000

thickness (m)	d ₅₀ (m)	All. Shear (N/m²)	
0.17	0.100	195	
0.23	0.120	230	
0.30	0.150	288	
0.50	0.200	384	

2000-2018

All. Shear (N/m²)
224
268
336
470

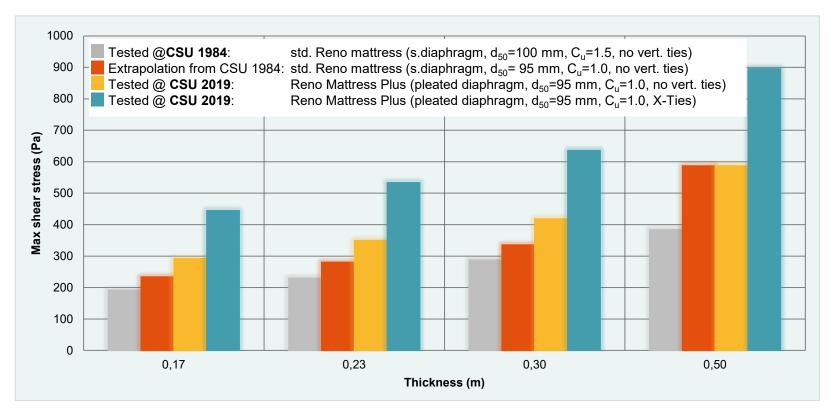
Lo sviluppo del nuovo materasso Reno alla fine degli anni 80 con il doppio diaframma (Castoro), insieme a una storia di diversi casi di successo, ci consente di assumere che il C_{Shields} per questi nuovi materassi può essere incrementato di circa il 17%

La ricerca CSU del 2019

E COSA CI DICONO I RISULTATI DELLE PROVE 2019?

La ricerca CSU del 2019 - RISULTATI

La tensione massima ammissibile dipende da diversi fattori (non solo da C_s , peso e diametro d_{50}) ma anche da:


- Uniformità del riempimento in pietrame
- Spessore del materasso
- Tipo di diaframma (singolo o castoro)
- Presenza di tiranti verticali (per incrementare il confinamento)

 $\tau = C_{Shields}(\gamma_s - \gamma_w)d_{50}f[d_{50}, C_u, t, partition, ties]$

			•		
H (m)	d ₅₀ (m)	C _u	τ _{max} (Pa)	Diaframma doppio (Y/N)	X Ties (Y/N)
0.17	0.083	1.0	402	Υ	Υ
0.17	0.083	1.5	321	Υ	Υ
0.17	0.095	1.0	445	Υ	Υ
0.17	0.095	1.5	355	Υ	Υ
0.23	0.083	1.0	482	Υ	Υ
0.23	0.083	1.5	385	Υ	Υ
0.23	0.095	1.0	534	Υ	Υ
0.23	0.095	1.5	426	Υ	Υ
0.23	0.102	1.5	445	Υ	Υ
0.30	0.083	1.0	576	Υ	Υ
0.30	0.083	1.5	459	Υ	Υ
0.30	0.095	1.0	638	Υ	Υ
0.30	0.095	1.5	509	Υ	Υ
0.30	0.102	1.5	532	Υ	Υ
0.30	0.121	1.5	591	Υ	Υ
0.50	0.102	1.0	783	N	Υ
0.50	0.127	1.0	896	N	Υ
0.50	0.127	1.5	714	N	Υ

La ricerca CSU del 2019 - RISULTATI

La ricerca CSU del 2019 - RISULTATI

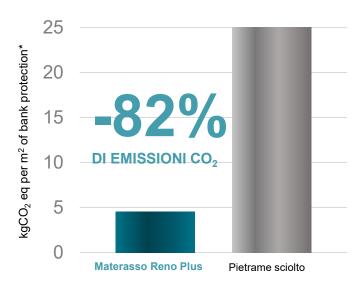
Progetto di protezione spondale usando LA TENSIONE TANGENZIALE come parametro di progetto

TENSIONE AGENTE (N/m²)	PIETRAME SCIOLTO	MATERASSO RENO	MATREASSO RENO RENO PLUS (con X-Ties)
< 200	40 cm	17 cm	17 cm
200-250	45 cm	23 cm	17 cm
250-300	60 cm	30 cm	17 cm
300-400	84 cm	50 cm	23 cm

La ricerca CSU del 2019 - RISULTATI

- Il Materasso Reno Plus con X-ties da 0.17m con pietrame selezionato ha le stesse prestazioni , o migliori, del materasso da 0.30-m con singolo diaframma
- Il Materasso Reno Plus con X-ties da 0.30m con pietrame selezionato ha le stesse prestazioni , o migliori, di un gabbione da 0.50-m
- Il Materasso Reno Plus con X-ties da 0.17-m 0.30-m copre il più ampio raggio di applicazioni idrauliche

Uso di minore materiale (acciaio & pietrame)



Minor impatto ambientale rispetto alle alternative convenzionali (calcestruzzo, rip-rap) o anche simili (reti metalliche)

BENEFICI AMBIENTALI

Il **Materasso Reno Plus** reduce le emissioni di CO₂ dell'82% rispetto al pietrame sciolto

Il Materasso Reno Plus riduce l'impatto ambientale della protezione delle sponde fluviali. Ciò è dovuto al risparmio di materiali e di trasporto.

Poiché il materasso favorisce la crescita della vegetazione, produce anche un sequestro di carbonio di 0,46 kgCO2/m² all'anno**.

*Data are based on Environmental Product Declaration (EPD). Figures refer to specific field condition (shear stress 400 N/m2). Additionally, not considered in the graph, Reno Mattress enhances the vegetation growth further increasing the environmental benefit of the solution.

** APMC, 2012. Carbon Footprint dei Gabbioni e Materassi Maccaferri e confronto con soluzioni tradizionali

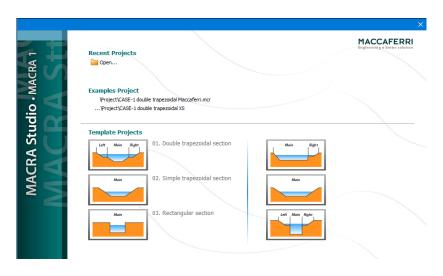
BENEFICI AMBIENTALI

Il **Materasso Reno Plus** rivestito con **PoliMac**® **reduce** riduce le emissioni di CO₂ del 28% rispetto al matarasso tradizionale

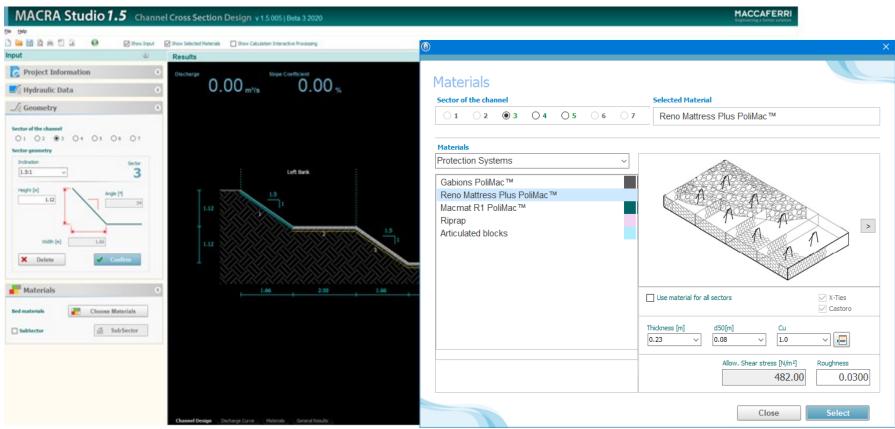
Il Materasso Reno Plus con X-Ties riduce ulteriormente il carico ambientale rispetto ai materassi standard.

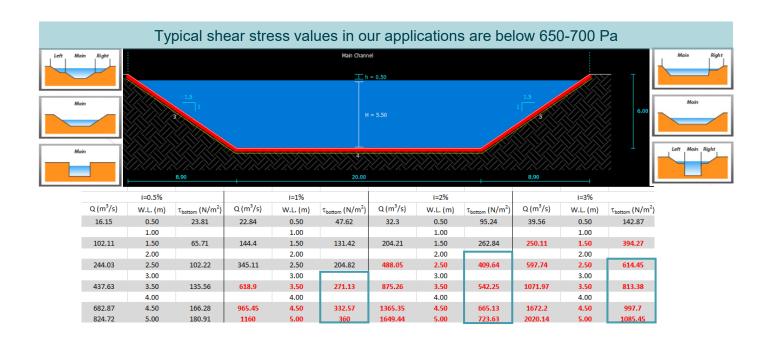
Meno pietre significa meno emissioni di CO2, meno spostamenti di camion

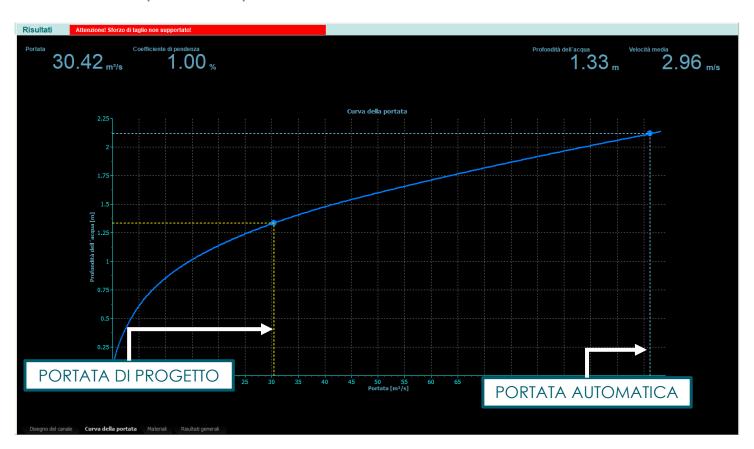
*Data are based on Environmental Product Declaration (EPD). Figures refer to specific field condition (shear stress 400 N/m²). Additionally, not considered in the graph, Reno Mattress enhances the vegetation growth further increasing the environmental benefit of the solution.

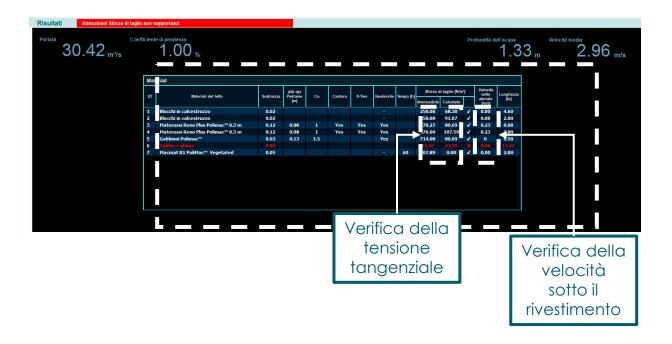

SOFTWARE

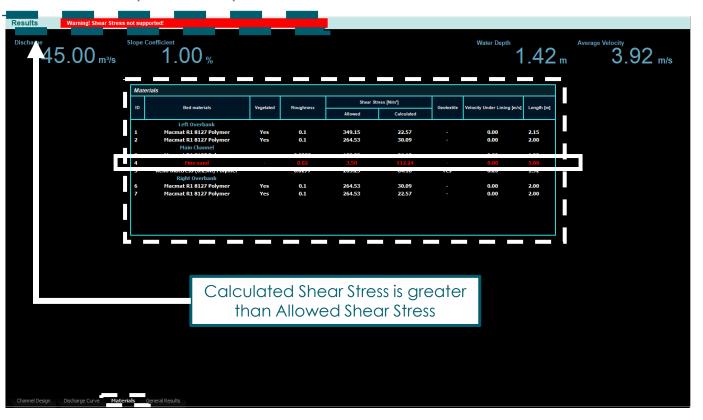
MACRA STUDIO

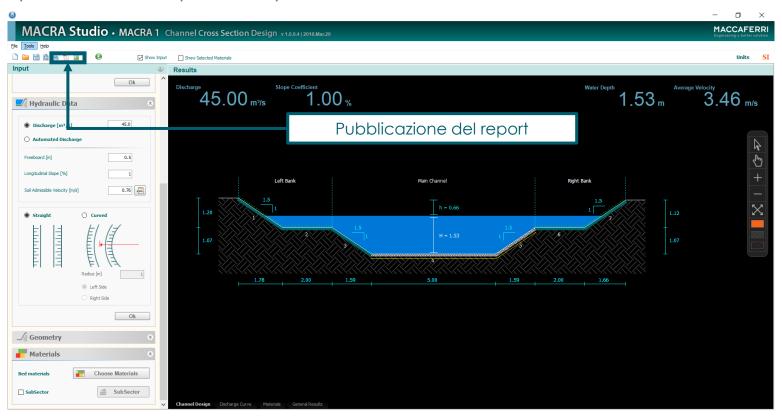

SOFTWARE PER LA VERIFICA DELLE PROTEZIONI SPONDALI

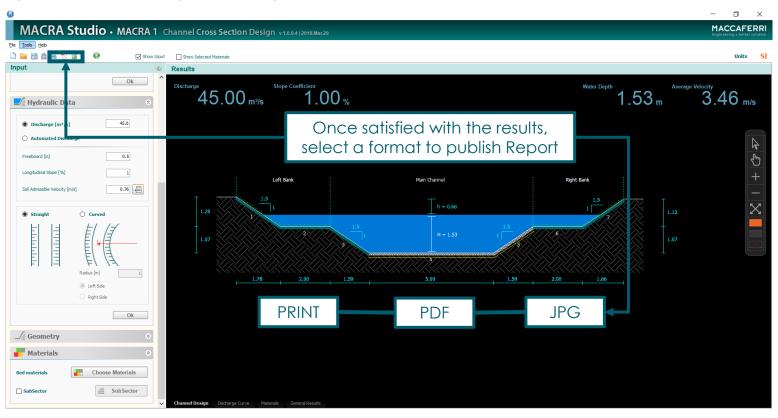





RISULTATI







Software per la verifica delle protezioni spondali

MACRA Studio | Channel Cross Section Design

Description

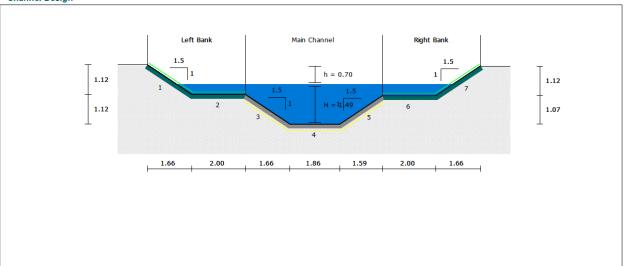
MACCAFERRI

Software Suite for Channel Design

Client Maccaferri | #

www.maccaferri.com

pag. 1 of 3


Project Information

Date 06/08/2018 Title Presentation Number

Client Maccaferri Author/Designer • Input

Discharge [m³/s]		22.00	
Longitudinal Slope [%]		1	
Freeboard [m]	0.50		
Bending Radius [m]	-		
Bending Side			

Channel Design

Software per la verifica delle protezioni spondali

$\pmb{MACRA\ Studio}\ |\ \textit{Channel\ Cross\ Section\ Design}$

MACCAFERRI www.maccaferri.com

Software Suite for Chariffer Design

Client Maccaferri | #

pag. 2 of 3

Results

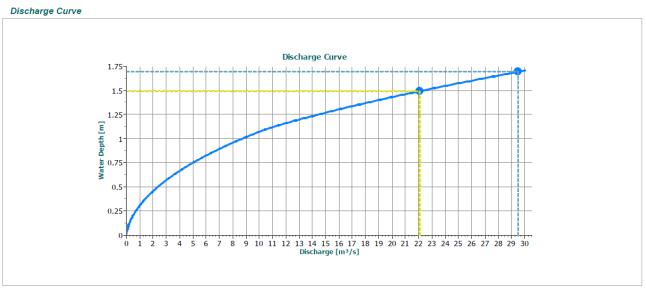
Freeboard [m]	0.7	Freeboard Satisfied
Longitudinal Slope [%]	1	
Water Depth [m]	1.49	
Froude Number	1.07	Supercritical Flow

	Total	Left Overbank	Main Channel	Right Overbank
Discharge [m³/s]	22.00	0.39	21.19	0.48
Cross Sectional Area [m²]	7.64	0.84	5.83	0.97
Wetted Perimeter [m]	7.59	2.66	5.78	2.75
Hydraulic Radius [m]	0.68	0.32	1.01	0.35
Water Velocity [m/s]	2.89	0.46	3.63	0.5
Average Roughness	-	0.1	0.0277	0.1

Materials

	ID	D Bed materials Vegetated Roughness Shear Stress [N/m²] Allowed Calculated		Geotextile	Velocity Under Lining [m/s]		Length [m]				
Left Overbank	1	Macmat R1 8127 Polymer	Yes	0.1	264.53	23.68	✓	-	0.00	✓	2.00
Left Overbank	2	Macmat R1 8127 Polymer	Yes	0.1	264.53	31.58	V	-	0.00	V	2.00
Main Channel	3	Reno mattress (0.23m) Polymer	-	0.0277	205.25	75.71	V	Yes	0.26	✓	2.00
Main Channel	4	Reno mattress (0.23m) Polymer	-	0.0277	268.80	100.95	V	Yes	0.26	✓	1.86
Main Channel	5	Reno mattress (0.23m) Polymer	-	0.0277	205.25	75.71	✓	Yes	0.26	✓	1.92
Right Overbank	6	Macmat R1 8127 Polymer	Yes	0.1	264.53	35.28	✓	-	0.00	V	2.00
Right Overbank	7	Macmat R1 8127 Polymer	Yes	0.1	264.53	26.46	V	-	0.00	√	2.00

Software per la verifica delle protezioni spondali


MACRA Studio | Channel Cross Section Design

MACCAFERRI www.maccaferri.com

Software Suite for Channel Design Client Maccaferri | #

pag. 3 of 3

